A Two-Point Boundary-Value Approach for Planning Manipulation Tasks

نویسندگان

  • Peng Song
  • Vijay Kumar
  • Jong-Shi Pang
چکیده

We consider the problem of planning manipulation tasks in which rigid body dynamics are significant and the rigid bodies undergo frictional contacts. We develop a dynamic model with frictional compliant contacts, and a time-stepping algorithm that lends itself to finding trajectories with constraints on the starting and goal conditions. Because we explicitly model the local compliance at the contact points, we can incorporate impacts without resetting the states and reinitializing the dynamic models. The problem of solving for the frictional forces with the Coulomb friction cone law reduces to a convex quadratic program. We show how this formulation can be used to solve boundary value problems that are relevant to process design, design optimization and trajectory planning with practical examples. To our knowledge, this paper is the first time boundary value problems involving changes in contact conditions have been solved in a systematic way.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Planning and Control of Two-Link Rigid Flexible Manipulators in Dynamic Object Manipulation Missions

This research focuses on proposing an optimal trajectory planning and control method of two link rigid-flexible manipulators (TLRFM) for Dynamic Object Manipulation (DOM) missions. For the first time, achievement of DOM task using a rotating one flexible link robot was taken into account in [20]. The authors do not aim to contribute on either trajectory tracking or vibration control of the End-...

متن کامل

F-TRANSFORM FOR NUMERICAL SOLUTION OF TWO-POINT BOUNDARY VALUE PROBLEM

We propose a fuzzy-based approach aiming at finding numerical solutions to some classical problems. We use the technique of F-transform to solve a second-order ordinary differential equation with boundary conditions. We reduce the problem to a system of linear equations and make experiments that demonstrate applicability of the proposed method. We estimate the order of accuracy of the proposed ...

متن کامل

Planning Velocities of Free Sliding Objects as a Free Boundary Value Problem

In this paper, a novel planning method is proposed to solve initial velocities of the free sliding object for given initial and final configurations. Finding the desired initial velocities for free sliding objects is a key step for implementing impulse manipulation and multi-agent dynamic cooperative manipulation. The motion of free sliding objects on a plane is governed by friction forces and ...

متن کامل

Using finite difference method for solving linear two-point fuzzy boundary value problems based on extension principle

In this paper an efficient Algorithm based on Zadeh's extension principle has been investigated to approximate fuzzy solution of two-point fuzzy boundary value problems, with fuzzy boundary values. We use finite difference method in term of the upper bound and lower bound of $r$- level of fuzzy boundary values. The proposed approach gives a linear system with crisp tridiagonal coefficients matr...

متن کامل

Chebyshev finite difference method for a two−point boundary value problems with applications to chemical reactor theory

In this paper, a Chebyshev finite difference method has been proposed in order to solve nonlinear two-point boundary value problems for second order nonlinear differential equations. A problem arising from chemical reactor theory is then considered. The approach consists of reducing the problem to a set of algebraic equations. This method can be regarded as a non-uniform finite difference schem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005